Collagen Dressings

or:
The Great Coverup

Mary Vercellino, MSN, RN, CWON, ACNS-BC

• Objectives:
 – Proteins vs Cells
 – Structure of the dermis
 – Structure of collagen
 – Mechanism of collagen dressings
 – Types of collagen dressings
 • Acellular
 • Biologic or Cellular
 – Research on collagen-containing dressing

• Disclaimer:
 – Not an exhaustive review of all collagen-containing dressings
 – Conclusions are mine alone, and alternate conclusions could be a good topic for your DNP project or PhD thesis
• Disclaimer:
 – Not an exhaustive review of all collagen-containing dressings
 – Conclusions are mine alone, and alternate conclusions could be a good topic for your DNP project or PhD thesis

• Reviews:
 – Just a lot of numbers!
 – I wanted to know what collagen dressing to use!
 – I didn’t like that the product names weren’t used!

Biochemistry Review!

• Biochemistry review!
• Amino acids consist of Carbon atom with amino group (NH2), Carboxyl group (COOH), a hydrogen atom, and a side chain, which can be variable
• Sometimes called residues
• Biochemistry review!
 – Peptides consist of short chain of amino acids (20 kinds of amino acids)
 – Polypeptides consist of a long peptide chain

• Biochemistry review!
 • Protein:
 – A building block of the cell (but NOT A CELL!)
 – A structural hierarchy of strings of amino acids which comprise a protein
 – The STRUCTURAL SHAPE of the protein helps determine it function

• Protein structures:
 – Primary: The linear sequence of amino acids
 – Secondary: The folding into a secondary structure
 • Alpha helix
 • Beta sheet
• Collagen is a protein with a helix structure:
 – A triple alpha helix
 – Which then assemble into fibrils
 – Which then assemble into fibers

• Collagen is:
 – A protein molecule (not a cell)
 – 2/3 of the dry weight of skin
 – 1/3 of the protein in humans
• What does the body do with collagen?
 – Tendon
 – Ligaments
 – In our case, is part of the composition of the ECM (extracellular matrix) which makes up the DERMIS

• ECM (extracellular matrix)
 – Secreted proteins that provide structural support of tissue, secreted by fibroblasts
 • Collagen
 – Types 1, 2, and 3 (Fibular collagens)
 – Type 4 (sheet type)
 • Laminin
 • Elastin

• Skin:
 – Epidermis
 • Cells are building blocks
 • Cells densely packed
 – Dermis
 • Cells are supported by ECM, lower density
In dermis, cell density (Fibroblasts) is sparse, supported by collagen in the ECM.

- Fibroblasts in the dermis synthesize and maintain:
 - Collagen
 - Elastin
 - Hyaluronic acid
 - MMPs
 - TIMPs

- Maintenance of the ECM
 - Regulation of the ECM
 - TIMPs
 - Tissue inhibitor of metalloprotease
 - MMPs
 - Matrix metalloproteases
 - Proteins, not cells

ECM maintenance is a delicate dance between MMPs and TIMPs.

- MMP functions in wound healing
 - Removal of damaged ECM
 - Help enable angiogenesis in wound by breaking down basement membrane around capillaries
 - Contraction of scar tissue
 - Remodeling of scar tissue

“Groot”

“Protein MMP1 PDB 1ayk” by Emw - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Protein_MMP1_PDB_1ayk.png#/media/File:Protein_MMP1_PDB_1ayk.png
• Collagen dressings:
 – Acellular: are usually less expensive.
 • Sometimes called “dermal template”
 • “Wound Matrix”
 • “Scaffold”
 • Collagen from animal sources
 – Cellular or Biologic
 • May contain fibroblasts, epithelial cells, growth factors, and cytokines
 • Collagen from human tissue

• Sources of collagen
 – Bovine
 – Ovine
 – Porcine
 – Human

• Acellular
 – Promogran, Prisma, and Fibracol
 – Oasis
 – Endoform

• Cellular or Biologic
 – Dermagraft
 – Apligraf
 – Theraskin
 – Epifix
• Acellular collagen dressings:
 – Processed to removes cells
 • Leaving only the collagen matrix
 • May degrade the structure of the collagen
 • Sterilized
 – More than just trying to replace missing human collagen
 • Does NOT replace human collagen permanently
 • Provides a TEMPORARY “scaffold” or matrix
 • A “sacrificial substrate” to bind MMPs, which then break down the dressing, and not the wound collagen

• Collagen processing
 • “Claim to fame”
 – Collagen/ORC denatured
 – Vs Minimally processed

• Mode of action of collagen dressing
 – Recruit fibroblasts (chemotaxis)
 – Promotes fibroblast attachment to the scaffold
 – Binds MMPs
 – Provides structure for wound healing
 – May stimulate angiogenesis
 – May provide growth factors

• So let’s examine some acellular collagen dressings first
 — And will review some of the evidence

• But first...
 — Mary’s pet peeve:
 — “I was taught”...

 "I'M DRAWING A LIST OF MY PET PEEVES."

• Research
 — Not big money in wounds
 — Many studies sponsored by manufacturer
 • Most are for DFUs or venous ulcers
 — Small n
 — Research designs less rigorous (least to most)
 • Case study or series
 • Retrospective
 • Prospective
 • Randomized, controlled
• Research
 – There's no money in wounds!

• Research
 – Most studies seem to compare dressing to “standard of care”
 • Debridement
 • Offloading
 • Wet to dry (ugh)
 – More recently:
 • Comparative effectiveness research
 – 2009 ACA
 – Compares two treatments for effectiveness in clinical arena
• Comparative Effectiveness Research
 – ACA established PCORI
 • Patient-centered Outcomes Research Institute
 – Funded by a tax on Medicare and private health insurance companies
 – Hoping to find most effective treatments through research
 – Some find this controversial
 • A slippery slope to health care rationing?

• Promoran: Collagen/ORC 45% ORC (Oxidized regenerated cellulose)
 – 55% collagen
• Prisma: Collagen/ORC/silver 44% ORC/55% collagen/1% silver
• Fibracol: Collagen/alginate
 – 90% collagen/10%
• Collagen source:
 – Bovine split hides from Australia

• These are “early” dressings
 – Approved by the FDA in the 90’s
 – Are less expensive
 – Evidence:
 • Difficult to compare
 • Small n
 • Some studies just tested the quantity of MMPs in the dressing, not wound healing
 • No big insurance hurdles
<table>
<thead>
<tr>
<th>Year</th>
<th>n</th>
<th>Results</th>
<th>More results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Donaghue et al.</td>
<td>DFUs: 10 collagen/alginate 3 saline gauze</td>
<td>78% had 75% or greater size reduction vs 60%</td>
</tr>
<tr>
<td>2002</td>
<td>Veves, et. al</td>
<td>DFUs: 138 collagen/ORC 138 saline gauze</td>
<td>After 12 weeks: 37% healed vs 18.3% (not stat sig)</td>
</tr>
<tr>
<td>2013</td>
<td>Gottrop, et. al RCT</td>
<td>DFUs: 24 collagen/ORC/silver 14 foam</td>
<td>>50% wound area reduction: 79% vs 43% (p<0.035)</td>
</tr>
</tbody>
</table>

- Hey! What’s this p-value thing?
 - A statistic
 - Indication that the answer to the research question has a significant result
 - Usually p <= 0.05 is considered significant

- Oasis (acellular)
 - Approved by FDA in 2006
 - Described as both a “scaffold” and a “matrix”
 - Collagen source is small intestine submucosa of pigs (SIS)
 - Includes growth factors and other dermal proteins (not cells)
 - Comes in dry sheets
• Oasis Evidence
 – 2005: Randomized trial
 – Diabetic foot ulcers
 – Oasis vs Regranex gel (becaplermin)
 – N=73
 – 49% closure in 12 weeks with product O
 – 28% with becaplermin
 – p = 0.055 (almost statistically significant)

• Oasis Evidence
 – 2010: Randomized trial (UK)
 – Some funding from manufacturer (editorial assistance)
 – N=50, ABI >=0.6, no infection
 – Mixed venous/arterial LE ulcers
 – Compared to “standard of care” (petrolatum gauze)
 – 80% closure in 8 weeks with product O
 – 65% with “standard of care”

• Endoform (acellular)
 – Approved by FDA in 2010 (New Zealand)
 – Collagen source is sheep
 • Propria submucosa of ovine forestomach tissue
 – 90% intact collagen, 10% secondary ECM components
 – Inexpensive
 – Comes in dry sheets
• Endoform
 – “Dermal template” (acellular)
 – Approved by FDA 2010
 – Referred to as an “intact collagen ECM”
 – Different processing than other acellular collagens
 – 90% collagen, 10% other “ECM components”

• Endoform (acellular)
 – Now being distributed by large wound dressing company
 – Evidence:
 • Scant due to new dressing
 • 2 case series found

• Research #1:
 – Prospective case series
 – n=19 patients, 24 wounds
 – Venous, arterial, DFUs, and incisional wounds
 – Debridement and compression (for VLUs)
 – 50% of wounds closed at 12 weeks

• Research #2:
 – Retrospective case series
 – n=14 patients, 23 wounds
 – Venous ulcers
 – Debridement and compression
 – 97% of wounds closed at 12 weeks vs:
 • 71% pig SIS
 • 46% standard of care

• Issues?
 – No control groups
 – n is small
 – Study #1 had a wide assortment of wounds
 – Both studies acknowledge need for controlled studies with large n

• Biologic collagen dressings:
 – Have the properties of the acellular dressings AND MORE!
 – May contain:
 • Collagen
 • Fibroblasts
 • Growth factors
 • Cytokines
 • Keratinocytes
 • Epithelial tissue
• Biologic collagen dressings
 – Some have viable human cells
 – Come in a variety of media
 • Frozen
 • Dry sheets
 • In petri dish
 – More expensive
 – Less applications
 – More requirements from insurers

• Cytokines
 – Low molecular weight proteins
 – Act as signaling agents
 • Cellular communication
 • Bind to receptor on cell
 • Triggers “second messenger” within cell
 • Directs the cell to do something
 • Produce/secrete protein
 • Alter membrane
 • Proliferate
 – Sometimes also considered growth factors

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-alpha</td>
<td>Collagen synthesis</td>
<td>MMP regulation</td>
</tr>
<tr>
<td>IL-1</td>
<td>Signals presence of an injury</td>
<td>Attracts neutrophils to wound to clean up</td>
</tr>
<tr>
<td>IL-2, IL-6</td>
<td>Fibroblast infiltration</td>
<td></td>
</tr>
<tr>
<td>IL-4</td>
<td>Inhibits TNF</td>
<td></td>
</tr>
</tbody>
</table>

• **Growth factors**

 – **Proteins**

 – **Function**
 - Stimulate cell proliferation
 - Stimulate cell differentiation

 – **Mechanism**
 - Like cytokines, bind to receptor on cell membrane
<table>
<thead>
<tr>
<th>Growth factor</th>
<th>Full name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
<td>53 amino acid protein Normal cell growth, wound healing</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
<td>Attracts neutrophils to wound to clean up</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet derived growth factor</td>
<td>Secreted by platelets and other cells</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
<td>Proliferation of fibroblasts, angiogenesis, endothelial cells, and others 100 + amino acids</td>
</tr>
</tbody>
</table>

- **Biologic Product Dermagraft**
 - Approved by FDA in 2001 for DFUs
 - Grown from neonatal foreskin tissue fibroblasts
 - Supplied frozen, must be thawed

- **Biologic Product Dermagraft**
 - Culture of neonatal dermal fibroblasts onto a bioabsorbable mesh scaffold.
 - Cryopreserved
 - Fibroblasts proliferate to fill the scaffold
 - Secrete collagen
 - Growth factors
 - Cytokines
 - Contains metabolically active living cells.
• Dermagraft Evidence
 – 2003 RCT by Marston, et al
 • 130 got Dermagraft, 115 got "conventional therapy".
 • At week 12, 30% of Dermagraft patients had full wound closure vs.
 18.3% of control
 – 2013 RCT by Harding, et al (from the UK) for venous
 • Product D + 4 layer compression for VLUs vs compression alone
 • 186 in Dermagraft group, 180 in control group
 • At 12 weeks:
 – 34% complete wound healing vs 31% control
 – If ulcers < 12 months duration, 52% vs 37%

• Apligraf
 – Venous ulcers and DFUs only
 – Approved by FDA:
 • 2000 for DFUs
 • 1998 for venous ulcers
 – From neonatal foreskins in a bovine type 1 collagen matrix
 – Neonatal dermis develops, with neonatal epidermis to cover

• Biologic Product Apligraf
 – 2 layers
 • Lower layer is bovine type 1 collagen and human fibroblasts
 • Top layer is human epidermal cells
 – From human keratinocytes
 • These are living cells
 – Supplied in petri dish
 – Not frozen, but has a shelf life
• **Apligraf Evidence for VLUs**
 - 1998 prospective, randomized, multicenter trial
 - Apligraf (n=146) with compression vs standard of care (compression only) (n=129)
 - 6 month follow up:
 - 63% Apligraf complete wound closure
 - 49% control group
 - p=.003

• **Apligraf Evidence for DFUs**
 - 2001 prospective, randomized, multicenter trial
 - P Apligraf (n=112) vs standard of care (saline gauze) (n=96)
 - For DFUs
 - 12 week follow up:
 - 56% product A complete wound closure
 - 38% control group

• **Comparative research**
 - Apligraf vs Oasis
 - 2014 study
 - Retrospective analysis, 2010-2012
 - Venous ulcers
 - Data from WoundExpert
 - 1451 wounds (1187 patients) got product A
 - 350 wounds (302 patients) got product O
 - Product A: Avg # treatments significantly lower than Product O (2.3 vs 3.3)
 - Estimated incidence of wound closure at week 12: Product A (31%) vs Oasis (26%)
 - At week 24: 50% vs 41%
• Comparative research
 – Apligraf vs Oasis
 • Good n, however...
 • No reliable measure whether compression was used or not
 • Funded by Apligraf
 • Subjects may have also been getting NPWT or HBOT, were not excluded from study
 • Apligraf may be marginally better at obtaining wound closure

• Amnion/Chorion containing Dressings
 – Amnion inner membrane
 – Chorion is outer membrane
 • Amnion contains:
 – Cytokines
 – Hyaluronan
 – Growth factors

• Biologic Epifix
 – Approved by FDA in 2013
 – Dehydrated human amnion/chorion allografts (dHACM)
 – Supplied in dry sheets
 – DFUs and in some areas and some insurance plans, VLUs
• **Biologic Epifix**

 – Contains human dermal collagen, growth factors, cytokines

 • PDGF, TGF, FGF, EGF, PLGF

 • IL-4, 6, 8, & 10

 • TIMP 1, 2, & 4

 • Native ECM

 • Both amnion and chorion layers

 • Non-living cells

• **Epifix Evidence**

 • N = 25 DFUs

 • 13 Product Ex, 12 Standard of care (silver gel or silver hydrofiber)

 • Funded by Mimedx (Epifix manufacturer)

 • At 6 weeks of treatment

 – 92% complete wound closure product EX

 – 8% (standard of care)

 – Subjects whose wounds failed to reduce by 50% after 6 weeks were exited

• **Epifix Evidence**

 • N = 84 VLUs

 • 53 Epifix + compression, 31 compression alone

 • Funded by MiMedx (Epifix)

 • At 4 weeks of treatment

 – 62% of Epifix group showed > 40% wound closure

 – 32% of compression group showed > 40% wound closure

 – 6 patients in Epifix group had complete wound closure

 – 4 patients in the compression group had complete wound closure

• Comparative research
 – Epifix vs Apligraf
 • N = 60 DFUs
 • Good design
 • 20 Epifix, 20 Apligraf, 20 collagen/ORC
 • Funded by MiMedx
 • At 6 weeks of treatment
 – 95% complete wound closure Epifix
 – 45% for Apligraf
 – 35% collagen/ORC
 – Subjects whose wounds failed to reduce by 50% after 6 weeks were exited

• Comparative research
 – Apligraf vs Epifix
 • N = 226 DFUs
 • 163 Apligraf, 63 Epifix
 • Funded by Organogenesis
 • Data culled from WoundExpert
 • Median time to closure
 – 13.3 weeks for Apligraf
 – 26 weeks for Epifix

• Biologic Theraskin
 – From donated human tissue (cadaver)
 – Contains:
 • Fibroblasts
 • Keratinocytes
 • ECM (collagen)
 – Can be used on any wound
 • Not just DFUs or VLUs
 – Shipped on dry ice
• Theraskin Evidence
 — 2011 retrospective study, both DFUs and VLUs
 — N=188 (134 VLUs, 54 DFUs)
 — By 12 weeks
 • DFUs 60.38% of wounds had closed
 • VLUs 60.77% of wounds had closed
 — By 20 weeks
 • DFUs 74.1% of wounds had closed
 • VLUs 74.6% of wounds had closed

• Comparative research
 — Theraskin vs Dermagraft
 • 2014 study
 • Dermagraft:
 — Human fibroblast derived dermal skin substitute
 • Theraskin:
 — Human skin allograft, from cadaver skin
 • Authors on advisory board of product Theraskin
 • Prospective, multicenter, randomized clinical trial
 — DFUs

• Comparative research
 — Theraskin vs Apligraf
 — 2011 study
 • N=29 patients with DFUs
 • 12 with Theraskin
 • 17 with Apligraf
 • At 12 weeks:
 – 41.3% of wounds closed with Apligraf
 – 66.7% of wounds closed with Theraskin

• Other biologics (not a complete list)
 — Biovance
 • Alliqua/Celgene
 • Dehydrated amnion
 — Amnioexcell/Amniomatrix
 • Derma Sciences
 • Dehydrated amnion
 — Grafix (frozen)
 • Osiris
 • Cryopreserved placental tissue

• Large reviews
 — NO Cochrane review on advanced wound dressings
 — VA 2012: 177 page review of advanced wound care therapies
 — AHRQ (2012) 64 page review
 • Agency for Healthcare Research and Quality

• Conclusions
 – Anything’s better than wet to dry
 – Many studies have small n
 • Few rigorous RCTs
 • No money in wound care!
 – Collagen/ORC/Silver/Alginate
 • Minimal significant results
 – Ovine dressing
 • Too soon to tell

• Conclusions
 – Biologics
 • Better results from studies
 • Obviously, more expensive
 • Must wrestle with insurance to use them
 • Sometimes, you just have to use your own clinical judgment!
 • Because we WOC nurses are awesome!

Thank you! Thank you very much!

mvercellino@sprynet.com if you want a copy of this presentation
• References
 - Molecular Cell Biology, 7th edition, Lodish, etc.
 - Advanced Wound Care Therapies for non-healing diabetic, venous and arterial ulcers: A systematic review. (2012). Department of Veterans’ Affairs, Quality Enhancement Research Initiative